در سال 1997، کونو و همکارانش (به نام های توشیوکی کونو، هیساشی کوتاکموری، هیروشی نیکی) با بهبود روش گوس - سایدل برای ماتریس های Z، جبر خطی Appl. 267 (1997) ثابت کرد که نرخ همگرای روش گوس - سایدل با پیش شرط برای ماتریس های Z مسلط قطری ساده نشدنی با پیش شرط 1+sa برتر از نرخ روش تکرار پایه می باشد.
در این مقاله، پیش شرط جدید ارائه می کنیم که متفاوت از پیش شرط ارائه شده توسط کونو و همکارانش (به نام های توشیوکی کونو، هیساشی کوتاکموری، هیروشی نیکی که به اصلاح روش روش گوس - سایدل برای ماتریس های Z، جبر خطی Appl. 267 (1997) پرداختند، می باشد و نظریه همگرایی در مورد دو روش تکراری پیش شرط دار را زمانیکه ماتریس ضریب یک ماتریس H می باشد، را ثابت می کنیم. در ضمن، دو شرط کافی جدید برای تضمین همگرایی روش های تکراری پیش شرط دار ارائه می شوند.
سیستم خطی زیر را در نظر می گیریم: که در آن A یک ماتریس nxn می باشد و x و b بردارهای n بعدی می باشند. برای هر تجزیه، A=M-N با ماتریس ناویژه (ناتکین)، روش تکراری پایه برای حل سیستم خطی (1) به صورت زیر می باشد: برخی تکنیک های پیش شرطی که نرخ همگرایی این روش های تکراری را بهبود می بخشند، توسعه یافته اند.