مسیریابی در شبکه پویا یک فعالیت چالش انگیز است، چون توپولوژی شبکه ثابت نمی باشد. این مسئله در این بررسی با استفاده از الگوریتم موریانه ای برای مد نظر قرار دادن شبکه هایی که از چنین بسته های اطلاعاتی استفاده می کنند، مطرح می گردد. مسیرهای ایجاد شده توسط الگوریتم انت (موریانه) به عنوان داده ورودی برای الگوریتم ژنتیک می باشد. الگوریتم ژنتیکی مجموعه ای از مسیرهای مناسب را پیدا می کند. اهمیت استفاده از الگوریتم موریانه ای، کاهش اندازه جدول مسیر می باشد. اهمیت الگوریتم ژنتیک بر مبنای اصل تکامل مسیرها به جای ذخیره مسیرهای از پیش محاسبه شده می باشد.
مسیریابی، الگوریتم موریانه ای، الگوریتم ژنتیکی، معبر، جهش، هر یک از این موارد در زیر به بحث گذاشته می شود.
مسیریابی به عنوان فرایند انتقال بسته ها از گره مبدا به گره مقصد با هزینه حداقل می باشد. از این رو الگوریتم مسیریابی به دریافت، سازماندهی و توزیع اطلاعات در مورد وضعیت شبکه می پردازد. این الگوریتم به ایجاد مسیرهای عملی بین گره ها پرداخته و ترافیک داده ها را در بین مسیرهای گلچین شده ارسال کرده و عملکرد بالایی را حاصل می کند. مسیریابی به همراه کنترل تراکم و کنترل پذیرش به تعریف عملکرد شبکه می پردازد. الگوریتم مسیریابی می بایست دارای اهداف کلی از استراتژی مسیریابی بر مبنای اطلاعات سودمند محلی باشد. این الگوریتم همچنین می بایست کاربر را در مورد کیفیت خدمات راضی نگه دارد. بعضی از روش های مطرح شده برای رسیدن به این اهداف عبارتند از شبیه سازی حشرات اجتماعی و شبکه بسته شناختی. این دو روش از جدول مسیریابی احتمالات استفاده کرده و این امکان را به بسته ها می دهد تا به بررسی و گزارش توپولوژی و عملکرد شبکه بپردازند. دوریگو ام و دی کارو جی، شبکه موریانه ای را به عنوان روشی برای مسیریابی در شبکه ارتباطات مطرح می کنند. ار اسکوندر وورد، اون هالند، جانت (موریانه) بروتن و و لئون روسکرانت، در مقاله شان به بحث در مورد حاصل شدن توازن ظرفیت در شبکه های ارتباطاتی با استفاده از الگوریتم موریانه ای می پردازند. تونی وارد در مقاله تخصصی اش به شرح این موضوع می پردازد که چگونه عوامل محرک بیولوژیکی می تواند برای حل مشکلات مدیریت و کنترل در ارتباطات مورد استفاده قرار گیرد.
هدف این مقاله ایجاد راه حلی با استفاده از الگوریتم موریانه ای (استعاره حشره اجتماعی) و بهینه سازی راه حل با استفاده از الگوریتم های ژنتیکی می باشد. الگوریتم موریانه ای دسته ای از تراکم اطلاعاتی می باشد. تراکم اطلاعاتی روش جایگزینی را در ارتباط با طراحی سیستم اطلاعاتی ارائه می دهد که در آن عملیات خودگردانی، ظهور و توزیع جایگزین کنترل، پیش برنامه ریزی و تمرکز می گردد. این روش تمرکزش را بر روی توزیع، انعطاف پذیری، توانمندی و ارتباطات مستقیم و غیرمستقیم در میان عوامل نسبتا ساده قرار می دهد. الگوریتم ژنتیک به عنوان الگوریتمی می باشد که در آن جمعیت مرتبط با هر گره در مجموع برای حل مشکلات مشارکت دارد.